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1 Introduction

Non-invasive interrogating techniques are most valuable in determining substructure in bi-
ological tissues due to the fact that they usually result in much less discomfort in subjects.
Controlled microwaves (electromagnetic waves in the frequency range of 3 to 300 gigahertz)
can pass through many media without causing damage. On the other hand, chemical and
physical changes in biological tissue can result in changes in its electromagnetic characteris-
tics such as electric and magnetic polarization mechanisms and conductivity. Consequently,
microwaves sent into two different tissues will show different propagation features, and anal-
ysis of these features often can yield useful information on tissue dysfunction. Applications
of the use of microwaves in non-invasive interrogation procedures can be found in a recently
published review article [1]. Use of ultrasonic waves is another popular technique used in
non-invasive interrogation of media in both industrial and medical applications. It has been
well known since 1922 [5] that electromagnetic and sound waves can interact in a medium
and influence each other’s propagation. This interaction has been the subject of substan-
tial investigation in acoustooptics [7, 8, 10], and numerous acoustooptic devices have been
developed in many applications in industry such as neural nets, optical excision, and fiber
optics to name just a few.

In this report, we investigate the possibility of using the interaction between electromag-
netic and ultrasonic waves to interrogate the structure of a biological medium. The medium
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considered here is a fluid; this is motivated by the fact that the major component of human
tissue is water. We focus on a class of models for electric polarization in the context of
Maxwell’s equations. It is well known (e.g., see [2, 3] and the references therein), that po-
larization mechanisms will affect substantially the propagation of an electromagnetic wave
passing through a medium. Our aim here is to demonstrate how modification of the polar-
ization feature in a tissue by an ultrasonic wave, which produces a virtual interface, can be
used. An electromagnetic probe sent into this tissue will partially reflect from this artificial
interface, and return information (e.g., geometry) about the part of the tissue between its
surface and this artificial interface.

For the propagation of the microwaves, we assume, as in [2, 3], that the Maxwell’s
equations hold; specifically,

0B
VxE_—W, (1.1)
oD
VXH—E—I-J, (1.2)
VD = pem, (1.3)
V-B=0.

along with the basic constitutive laws for a conductive (Ohm’s law) dielectric:

J=0E, (1.5)
D =¢E+ P,
B = [.,LOH + ILL()M

Here E is the electric field intensity, D is the (displacement) electric flux density, H is the
magnetic field intensity, B is the magnetic flux intensity, J is current density, p.,, is the free
(unpaired) charge density, P is the electric polarization, M is the magnetic polarization.
In our initial efforts, we concentrate on the propagation of an electromagnetic wave which
is uniform in the x — y plane moving in the z direction. The motivation (use of polarized
impulsive probes) is explained more fully in [2, 3]. This assumption allows us to consider the
electromagnetic fields in the following form: E = E(t,2)i,P = P(t,2)i,H = H({,2)j. We
consider electromagnetic wave propagation in the normalized interval z € [0, 1], assume that
the fluid slab occupies the space for z € [z1, 1], and an acoustic wave is given in the part of
the fluid for z € 29, 1] with 0 < z1 < 23 < 1. Figure 1 is a sketch of the geometry considered
here.

Since we are mainly interested in biological media which are non-magnetic, we further
assume that the magnetic polarization is zero, i.e., M = 0. Then Maxwell’s equations
together with the basic constitutive laws yield the following equation in the domain 0 < z <

1:

PE oo 10 1 0B _ 10,
ot? € O ¢ Ot? copo 02% ¢ Ot

(1.8)
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Figure 1: Geometry of physical problem.

Applying an electronic field to a dielectric material will cause electric polarization which is,
of course, material dependent. In our investigation here, the part of material for z € [0, 2],
which is air, is assumed to have zero electric polarization and zero conductivity; the part
of material for z € [z1, 23] is assumed to obey the Debye law (Chapter 2, [6]), in which the
electric polarization responds to the electric field in a decaying first order manner:

T@_P + P =eo(es — €0 E. (1.9)
ot
Here ¢, and €., are the static relative permittivity and high frequency relative permittivity,
respectively, and 7 is the relaxation time. More details of this model can be found in [6],
and other models for the polarization can be found in [2, 3] and references there.

The introduction of an acoustic wave will change the density of the fluid (indeed, acoustic
waves are simply pressure waves which involve density variations). This in turn will affect
electromagnetic properties, such as the refraction index, of the fluid. This is known as the
acoustooptic effect. Consequently, any electronic wave transmitted into this part of fluid will
be modulated by the acoustic wave. At the same time, the material electrostriction caused
by the electronic waves will also affect the propagation of the pressure wave in the fluid [9].
This produces a fully coupled nonlinear model with equations for both the electromagnetic
and acoustic pressure waves (see [4] and page 825 of [9]). In our initial efforts, we focus on
the effects of the acoustic wave as a reflector of electromagnetic waves. We ignore the effect
of electromagnetic forces in the acoustic equation under the tacit assumption that the effect
is weak. To demonstrate the effect of the acoustic wave on the electronic wave, we begin
with a common assumption [8] that the electric susceptibility is an affine function of the



acoustic pressure p(t, z):

X = Xo + xip(t, 2).

Then we have

P = eox ks = eo(xo + x1p(1, 2)) E, (1.10)
and hence
0*P 0*FE 0*p Op OF 0’FE
— = — A(=—=F +2—— +p—).
g7~ oz tex(Ga b+ 25mr +ras)

More generally, we may assume that the fluid in the acoustically effected part of the domain
obeys a generalized pressure dependent polarization rule (Chapter 9, [6]):

1 9*P oK 0*F

g = PWE+ L5+ L) 57

To simplify issues in this preliminary investigation, we take

fo(p) =0, fi(p) =0, falp) = &p(t, 2),

which we note is not a special case of (1.10). Thus our polarization assumption in the
acoustic fluid is given by
1 9*°P 0*°E
——— = kp(l, 2)—. 1.11
L =l ) (111)
Using (1.11) in (1.8), we have the following partial differential equation for the electric field
in the region disturbed by acoustic waves:

0’E o OF 0*E 1 0*E 14J;

TIZ L ep(t - — T <<l
ot? + €o Ot + kp(t, 2) ot? copto 02° € Ot S

This equation is very similar to the one given in [9] derived from thermodynamical consid-
erations.

To complete the demonstration model, we assume that the material outside the space
z € [0, 1] can absorb the electronic wave completely; hence we can use the following boundary
conditions for the electric field:

1) oF
a(i, 0) - Cg(t, 0) = 0,

with




We also assume the initial conditions:

ok
ot
For the purpose of deriving an efficient numerical scheme, we reduce the second order

derivative of P in (1.8) by the Debye’s polarization law (1.9). This results in a first order
derivative of P along with a similar additional term for F in the basic Maxwell’s equation.

E(0,2) =0, ——(0,2) = 0.

Thus, we use the following initial-boundary value problem to model the dynamics of the
electromagnetic fields:

0*FE oF oP 0’FE

Cl(t Z)a?—l_b( )E—I_e( ) ol d(Z)W—I_F(th)v EAS (071)7 (112)
oP

5 = =P + % E, 2z € [z, 2], (1.13)
oE 0F, _ or oE _

OB 10) a0 =0, 2+ JaaEiny =0,
E(0,2) = 0, %:o, (1.15)
P(0,2) = 0. (1.16)

where

CZ( ) =1+x p(t Z)X[zz,l]a
a

(Z) 60X[2171] + gX[Zth]v

Up)
6(2) = ~ X[z1,22]s

€o

1
d(z) = = \
€olo

1 €o(€s — €xo) 1 dJ;

2 7_7 2 - 3 (72) €o atv

and X[z, z,] 18 the usual characteristic function for the interval [zy, z5).

2 A finite element scheme

To approximate the solutions to the unknowns F(t,z) and P(t,z) in the model presented in
the previous section, we first introduce a partition in the space variable:

O=zo< 1 < - < 2N, =1,
such that

21 = $i1722 = xig)



for some integers 1 < 11 < 13 < N,, and

h = z:lr,%,a%]\f (.’172 — «Ti—l)-

z

Then welet S* C H'(0, 1) be the standard linear finite element space defined on this partition
with a set of basis functions {¢;}Y75. We also use a partition in the time variable:

0=""<t'<.--. <Nt =T

?

with At =1 — 7', ¢=1,--- N,
As usual, we start with the weak form (see [2, 3]) of the model partial differential equation

(1.12):
<v,aa;T§> + <v b%f> <v ens P> + <’U,€"}/2 E>

— —1)\/_6E|Z1—1)\/_3E|Z0 <v',daa—f>—l-<v,F>,

for any v € H'(0,1), where ( , ) denotes the usual L*(0,1) inner product. From this, we
can formulate the following finite element discretization of (1.12):

<¢¢,a@ttE”> <</f>¢, batE”> <</f>¢, ens P”> + <</f>¢, esz”’1/4> = —Vadd,E" ;|
~Vadd, B ;7= — (¢, d(E"YY) + (1, F(1", 2)), (2.17)
where

N

E™(z) =) eldi(z) = E(1", 2),
7=1
N
=D _pioi(z) = P(",2),
7=1
and the following finite difference notation is used for the average

Un+1 _I_ 2Un _I_ Un—l

Un,1/4 =
4 bl
along with the difference quotients
Un+1 _ 2Un _I_ Un—l Un+1 _ Un—l
" AL 7 2At

As a scheme to compute E", assuming that P™ is given exactly, we expect the above scheme
to have the following accuracy:

IE" = E(t",)|l;. < C(h* + At%),
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provided that the solution is smooth enough. To update P" at each time step, it is preferable
to choose a scheme that has good stability and whose accuracy matches that used to compute
E™. Hence we use the following A-stable second order Adams-Moulton scheme to discretize
the equation (1.13):

1 At
P" = [ mat (Pn_l + 7(’72(En +E"7) + U?Pn_l)) : (2.18)
2

According to the given initial conditions, we should set
E°=0, P°=0, (2.19)

for the finite element approximations at the 0-th time level. By the Taylor expansion and

applying (1.12), (1.13), (1.15), and (1.16), we have

JE(0,z)  At*9?E(0,z2)

1 _ y 3
E(t,z) = E0,z)+ At 5 + 5 22 + O(At)
At?
~] F .
2a(0, z) (0,2)
Therefore we can let
At?
= F(0. 2). 2.20
2@(07 Z) ( 7Z) ( )

Putting all of these discretizations together, we have the following algorithm to generate
approximations to both E(t,z) and P(t,z):

Step 1 . Compute E° and P° by (2.19).
Step 2 . Compute E' by (2.20).

Step 3 . Then for each n = 1,2,---, N; — 1, we use (2.18) to compute P" &~ P(t", z) and use
(2.17) to compute E™t! =~ E(¢"!) 2).
3 Some numerical simulations

To test the model, we assume that a time “windowed” electromagnetic point source input
(e.g., see [2, 3]) is given at the left boundary point z = 0 such that

Js(t,z) = —5(Z)X[07tf](t)sin(ws t).
The frequency in the source is assumed to be in the microwave range, i.e.,

ws €3 x10°Hz,3 x 10" Hz].



The pressure is given by
wpl1, ) = rg(2)sin(wyt),
such that its frequency is in the ultrasonic range, i.e.,

wy € [0.1MHz,25M H z],

and in all the computations presented here, g(2) = x[,, 11(2).

ty [ 4.0x1071° | 7 | 3.162277660168379x10~®
€co 5.5 €s 78.2

o | 1.0x107° | & 10.0

Wy 7 x 107 Wy 7w x 10"

At | ts/1600 h 1/900

Table 1: Parameters used in Example 1.

Example 1: We chose all the parameters in this example similar to those for water except
for the relaxation time 7, with the value for 7 used here somewhat larger than those given in
the literature. We observed that smaller 7 leads to a weaker transmitted electronic wave into
the fluid which hinders observation of the interaction between the electronic and acoustic
waves. Some of the parameters are listed in Table 1. Representative plots are in Figure 2-5.

Example 2: The data used in this example are listed in Table 2. All the values are the same
as those in the previous example except for the frequency in the acoustic wave. In this case,
a lower frequency is used in the acoustic wave and we notice that the reflected wave from
the acoustic beam is weaker than that in the previous example, see Figure 6.

ty [ 4.0x1071° | 7 | 3.162277660168379x10~®
€co 5.5 €s 78.2

o | 1.0x107™° | & 10.0

Wy 7w x 106 Wy 7w x 10

At | t;/1600 h 1/900

Table 2: Parameters used for Example 2.
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Figure 2: Example 1. The electronic wave before it reaches fluid at z = z;.
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Figure 3: Example 1. The electronic wave in the fluid [z1, z2] before it interacts with the
acoustic wave at z = z9. A reflected wave is generated at the interface of air and fluid.
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Figure 4: Example 1. The electronic wave in the part of fluid [z3, 1] where there is an acoustic
wave. A reflected wave generated from the acoustic beam is seen in [z1, 2.
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Figure 5: Example 1. The reflected wave from the acoustic beam approaches the left bound-
ary.
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Figure 6: Example 2. The electronic wave in the part of the fluid where there is an acoustic
wave. A rather weak reflected wave is generated from the acoustic beam at a lower frequency.

Example 3: A smaller relaxation time 7 is used in this example, all other parameters are
the same those in Example 1 (see Table 3). From Figure 7, 8, and 9 we can see that the
transmitted electronic wave into the fluid is weak, with most of the electronic wave reflected
from the interface between air and fluid.

ty [4.0x1071 | 7 | 8.1x10712
€co 5.5 €s 78.2
o | 1.0x107° | & 10.0
wp 7w x 107 ws | ®x 10

Al | ;71600 | h | 1/900

Table 3: Parameters used for example 3.
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Figure 7: Example 3. The electronic wave before it reaches fluid.

Figure 8:
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Example 3. Transmitted electronic wave into the fluid is weak.
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time level 6551
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Figure 9: Example 3. Most of the wave is reflected back into the domain filled with air.

4 Identification of material depth

In this section, we consider the problem of using the signal F(t,0) collected at the left
boundary z = 0 to estimate the material depth. To be specific, we assume that all the
physical parameters other than the depth of the material are given (these can be estimated
using the first reflected waves from the interface at z1, see [2, 3]), and the interface of the
material closer to the source (which is also at z = 0) is fixed at z = z1. As before, we denote
the position of the interior interface between the fluid and acoustic domain by z,. After an
electromagnetic wave is sent to the material, reflected waves will be generated at the two
interfaces of the material that will propagate back to the left boundary where the wave is
generated. Intuitively, the difference between the times when the wave reflected from the
first interface and that from the second interface reach the left boundary depends on the
depth. Hence we shall attempt to estimate the depth of the material from this difference.
We first need a procedure to detect the time when a wave reflected from the interface
reaches the left boundary. Figure 10 depicts a typical data function E(¢,0). Note that
the data function is essentially zero except in three subintervals. We first considered using
the velocity Fi(t,0) to estimate z,. We expect the function F;(¢,0) to become zero after
the source has been turned off for a while. Then F(¢,0) becomes nonzero when the wave
reflected from the first interface arrives at the left boundary. This is followed by a period
of time when F(t,0) becomes zero again. Afterwards, F:(t,0) becomes nonzero due to the
arrival of the wave reflected from the second interface. Figure 11 presents a typical plot of

13



|F:(t,0)]. To aid in our estimation procedure, we define Tj to be the first time when
Et(ThO) > Clv Tl > 027

where both constants € and Cy can be determined from the measurement of E(¢,0). The
time (' should be larger than the time within which the source is generated. The constant C'y
should be chosen large enough to distinguish the change in data due to measurement error.
Since z; 1s assumed to be fixed in the identification of depth, T} should be independent of
z9. We next let T, be the first time such that

Et(TQ,O) > 03, Ty > T, + 04.

The constant (3 can be chosen in a way similar to that for C, which we can simply take
C5 = (1. The value of C4 should be chosen so that the wave reflected from the first interface
has passed the left boundary at the time ¢t = T, + (4. Clearly T, depends on the position
of the second interface, and we denote it by Ty = T3(z2). Then we define a function of z; as
the difference of these two characteristic times:

L(ZQ) = TQ(ZQ) — Tl,
and our identification problem leads to looking for a value z3 such that
L(z) = L(z), (4.21)

where 23 is the true position of the second interface of the material from which the data is
collected. Note that z5 is unknown, but L(z5) can be generated from the data.

To see the behavior of L(z;), we calculated its values for various z; in the neighborhood
of z5. A typical plot of L(z2), given in Figure 12, suggests that L(z2) acts almost like an
affine function in the neighborhood of 2. In this case, the secant method is a good candidate
for computing z; from (4.21).

Example 4: We assume that the true position of the second interface is at z5 = 2/3. The
data F(t,0) was generated by the finite element scheme presented in Section 2 with zo = 23
and other parameters listed in Table 4. The plot for the data of E(¢,0) is in Figure 10, and
the absolute value of its numerical derivative is plotted in Figure 11. From these plots, we
decided to choose the constants Cy, Cy, C3, Cy as follows:

Ch,=C3=45x10" Cy=20x10"", C4=1.25x10"".
With these constants, we can find that
L(z3) = 2.2165 x 107°.
Then we used the secant method to solve iteratively for z3 in

L(z9) = 2.2165 x 1077,

14
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Figure 11: A typical plot of |E4(t,0)].
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Figure 12: A typical plot of L(z3) in the neighborhood
ty [ 4.0x1071° | 7 | 3.162277660168379x10~®
€co 5.5 €s 78.2
o | 1.0x107° | & 10.0
Wy 7 x 107 Wy 7w x 10
Al 171600 | & 171800

and obtained the following approximation to the exact position of the second interface:

We remark that in the computation of Z,, we used A = 1/900 and 7 = ¢¢/1600 in the initial
boundary value problem.

We observe that the above scheme appears to be a reasonable approach only if we can have
a dependable measurement for the velocity F:(t,0). This approach most likely will not work
if numerical differentiation must be used to obtain an estimate of £;(¢,0) from a measurement
of E(t,0) with noise. This is due to the well known catastrophic behavior encountered in
using numerical differentiation on error-polluted data. Even a very small amount of error in
the data for £(t,0) will make the estimate of Fi(,0) generated by numerical differentiation
meaningless. For example, if we pollute the data given in the previous example by a uniformly
distributed random relative error with a magnitude only 5% of that of the data, then the

Table 4: Parameters used for Example 4.

29 = 0.66653017606683 ~~ z; = 2/3.
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Figure 13: A typical plot of an estimated |F,(t,0)| generated from numerical differentiation
on a measurement of £(¢,0) with a random error whose magnitude is only 5% of the true
data.

Ei(t,0) plotted in Figure 13 generated by numerical differentiation does not give any useful
information about the time lag between the two reflected waves.

On the other hand, the pulse signal E(¢,0) itself appears to be rather robust with respect
to the random noise from the point of view of indicating the time lag between the reflected
waves from the two interfaces. Figure 14 is a plot of the absolute value of the data for
E(t,0). Adding a uniformly distributed random error at the 5% level yields data plotted
in Figure 15 from which we can still easily discern the times when the two reflected waves
arrive at the left boundary. Hence we introduce another quantity to describe the time lag

from a measurement of F(t,0) as follows.
We define 77 to be the first time such that

E(TDO) > Cy, Ty > Oy,

where both constants C; and Cy can be determined from the measurement of K£(¢,0). The
value of (5 should be larger than the time during which the source is generated. The
constant C; should be chosen sufficiently large so as to distinguish the change in data due
to measurement error. The time T} should be independent of z; since 27 is assumed to be
fixed in the estimation of depth. We let T3 be the first time such that

E(TQ,O) > 03, Ty > 1T, + Cy.

17



The constant C3 can be chosen in a way similar to that for C; (we can even simply let
C3 = (C1). The constant C4 should be chosen so that the wave reflected from the first
interface has passed the left boundary at the time t = T, + (4. As expected T, depends
on the position of the second interface, and we denote it by Ty = T5(z3). Then we define a
function of z, as the difference of these two characteristic times:

L(z) = Ty(2z2) — Th.

Obviously, the construction procedure for L(zz) is similar to the one associated with data
E:(t,0), but no differentiation is used. As before, we define the solution to the identification

problem as a quantity z; that satisfies
L(z) = L(z3). (4.22)

Since this new time lag function of z, also appears to behave linearly in the neighborhood
of the exact location of the second interface z; (see Figure 16), we again believe that the
secant method is a good candidate for computing z; from (4.22).

Example 5: The function L(z3) just introduced is also rather insensitive to noise in the data.
See Table 5 for its behavior with respect to the random error with a uniform distribution,
and Table 6 for its behavior with respect to the random error with a normal distribution.

Noise Level | L(z}) by datum with noise
0 2.223 x 10~°
1% 2.22325 x 1077
5% 2.2225 x 107?
10% 2.2225 x 107?
15% 2.22275 x 1077
20% 2.22225 x 1077

Table 5: Measure of sensitivity of L(z3) to the noise with a uniform distribution in the data.

Here we used the finite element solution to generate a data for £(¢,0) with z5 = 2/3 and
other parameters listed in Table 4. The plot for the data of £(,0) is in Figure 10, and the
absolute value of the two reflected waves received at the left boundary is plotted in Figure
14. From these plots, we decide to choose the constants Cy, Cy, Cs, Cy4 for the definition of
L(zy) as follows:

Cy=C3=1.0, C;=20x10"", Cy=1.75"".

We perturbed this data by random numbers with various noise level, and used the error
polluted data to generate values of L(z;) in Table 5 and Table 6. Note that L(z}) changes
little even with the data at the 20% noise level.
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Standard deviation | L(z}) by datum with noise
0 2.223 x 107
0.01 2.2235 x 107°
0.05 2.222 x 107
0.1 2.2203 x 107°
0.15 2.2258 x 107°
0.2 2.219 x 107

Table 6: Measure of sensitivity of L(z2) to the noise with a normal distribution in the data.

Example 6: The estimation procedure for the depth 2z} based on this new time lag function
works well with data polluted with random errors at various levels as seen Table 7. Even
the data with 10% noise yields a good approximation to the location of the second interface.
Note that in the computation of Z;, we used the physical parameters listed in Table 4, but
we used b = 1/900 and At = t;/1600 to solve the initial boundary value problem, and the
exact location of the second interface is z5 = 2/3.

Noise Level | Z; by data with noise
0 0.66632745773773
1% 0.66632745773773
5% 0.66640117743327
10% 0.66629059787037

Table 7: The estimation procedure is rather robust with respect to the random noise in the
data. Uniformly distributed random errors were used in these computations.
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Figure 14: A plot of E(¢,0), uncorrupted
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Figure 15: A plot of E(t,0), corrupted with 5% random relative error.
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Figure 16: A typical plot of L(z3) in the neighborhood of z5 = 2/3.

5 Concluding remarks

In the preliminary investigations reported on in this note, we have demonstrated the potential
to employ internal acoustic fields as reflectors for electromagnetic probes in the interrogation
of dielectric media. The associated inverse problems are based on time domain formulation
of the acoustooptic signals in the media. Encouraged by these early findings, our efforts
are continuing with more involved electric polarization models as well as with models of the
acoustooptic interaction that are closer to physical reality.
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